Let $f(x) = \frac{7x+11}{5-2x}$. []

Let g be the function whose graph is shown on the right.

Let h be the function given by the table of values below.

x =	0	1	2	3	4	5
h(x) =	5	4	1	0	3	2

4 [a] Find [[f(5)]].

$$\begin{bmatrix} \frac{46}{-5} \end{bmatrix} = \begin{bmatrix} -9\frac{1}{5} \end{bmatrix} = -10$$

- 4 [b] Find the domain of g.
- Find the domain of f. 4 [c]

4 [d] Find the domain of f + g.

3 [e] Find the zero(s) of h.

$$h(x)=0$$
$$x=3$$

Find the range of g^{-1} . 4 [f]

4 [g] Find the range of g. ANSWER:

ANSWER:

SE QUESTIONS CONTINUED FROM PREVIO

3 [h] Find
$$g^{-1}(1)$$
.

$$g^{-1}(1) = x$$

 $g(x) = 1$
 $x = 5$

ANSWER:

4 [i] Find (gf)(1).

$$g(1)f(1) = (4)(\frac{18}{3}) = 4(6) = 24$$

ANSWER:

4 [j] Find $(\frac{h}{f})(4)$.

$$\frac{h(4)}{f(4)} = \frac{3}{\frac{39}{-3}} = \frac{3}{-13}$$

ANSWER:

Find $(g \circ g^{-1})(5)$. 4 [k]

ANSWER:

4 [1] Find $(f \circ h^{-1})(3)$.

$$f(h'(3)) = f(4) = -13$$

ANSWER:

7 [m] Find the average rate of change of h from $x_1 = 1$ to $x_2 = 3$.

$$\frac{h(3)-h(1)}{3-1} = \frac{0-4}{3-1} = \frac{-4}{2} = -2$$

ANSWER:

Find the difference quotient $\frac{f(x) - f(1)}{x - 1}$. [n] 6J

Find the difference quotient
$$\frac{f(x)-f(1)}{x-1}$$
.

ANSWER: $\frac{7\times +11}{5-2\times}$
 $\frac{7\times +11}{5-2\times}$
 $\frac{7\times +11-6(5-2\times)}{(x-1)(5-2\times)}$
 $\frac{7\times +11-30+12\times}{(x-1)(5-2\times)}$
 $\frac{7\times +11-30+12\times}{(x-1)(5-2\times)}$
 $\frac{7\times +11-30+12\times}{(x-1)(5-2\times)}$
 $\frac{7\times +11-30+12\times}{(x-1)(5-2\times)}$

[] Sketch the following graphs.

[] Let f be the function whose graph (a half-parabola) is shown below.

ANSWER:

/14 PTS

SCORE:

[] Let f be the function whose graph is shown here.

SCORE: /7 PTS

Which of the graphs below is f^{-1} ?

ANSWER:

/7 PTS

SCORE:

[] You are trying to sketch the graph of an equation. You draw part of the graph as shown below.

Replacing x with -x does not yield an equivalent equation.

Replacing y with -y yields an equivalent equation.

Replacing x with -x and y with -y does not yield an equivalent equation.

Sketch the entire graph of the equation on the axes on the right.

ANSWER:

Let
$$f(x) = -\sqrt{2x-5} + 1$$
.

SCORE: /21 PTS

4 [a] List the sequence of the

List the sequence of transformations in correct order from the parent function to f. HORIZONTAL

TRANSFORMATION #1: PEFLECT OVER X-AXIS TRANSFORMATION #4: COMPRESS (FACTOR 2)

(leave blank if < 4 transformations)

1 BEFORE #2-

7 [b]

[]

TRANSFORMATION #2: SHIFT UP | TRANSFORMATION #5:

TRANSFORMATION #3: SHIFT RIGHT 5

(leave blank if < 2 transformations) (leave blank if < 5 transformations)

TRANSFORMATION #6:

3 BEFORE #4 (leave blank if < 3 transformations) (leave blank if < 6 transformations)

Sketch the graph of f using transformations. Label appropriate scales on the x – and y – axes. Show the step-by-step transformation of 2 points on the parent function as shown in lecture.

$$(0,0) \rightarrow (0,0) \rightarrow (0,1) \rightarrow (5,1) \rightarrow (5,1) \rightarrow (1,1) \rightarrow (1,0) \rightarrow (6,0) \rightarrow (3,0)$$
 ANSWER:

Find
$$f^{-1}(x)$$
.

$$y = -\sqrt{2x-5} + 1$$

$$x = -\sqrt{2y-5} + 1$$

$$2y-5 = 1 - x$$

$$2y-5=(1-x)^{2}$$
ANSWER: $f''(x)=\frac{(1-x)^{2}}{2}$

$$2y=\frac{(1-x)^{2}+5}{2}$$

$$y=\frac{(1-x)^{2}+5}{2}=\frac{1-2x+x^{2}+5}{2}=\frac{1}{2}x^{2}-x+3$$

[]	According to the Old Farmer's Almanac, you can find the outdoor temperature by first counting the	SCORE:	/14 PTS				
	number of cricket chirps per minute. The function $T(c) = \frac{4}{5}c + 4$ then gives the temperature in degrees Celsius, where c is the						
	number of cricket chirps per minute.						
			6				

[a] Find the
$$c$$
 – and T – intercepts of the function.

THAT: $T(O) = \frac{4}{5}(O) + 4 = 4$
 C – INT: $O = \frac{4}{5}c + 4$
 $\frac{4}{5}c = -4$ — $C = -5$

ANSWER:
$$c - \text{int}$$
 $- \frac{3}{4}$

4 [b] Interpret the meaning of the T – intercept in context.

Do not use any of the following variables in your anwer: c, T, x, y

Do not use any of the following words in your answer:

intercept, axis, vertical, horizontal, input, output, graph, function, variable, slope, rise, run

ANSWER: 4 AT 4°C, THE CRICKETS WILL STOP CHIRPING

[c] Interpret the meaning of the slope in context.

Do not use any of the following variables in your answer: c, T, x, y

Do not use any of the following words in your answer:

intercept, axis, vertical, horizontal, input, output, graph, function, variable, slope, rise, run

ANSWER: (4) EACH A DOITIONAL CHIRP PER MINUTE CORRESPONDS